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We considered the most general coupled oscillator problem – 𝑁 particles coupled to each 
other by means of springs or any other types of forces that produce a stable equilibrium 
configuration.  This system has 𝑛 generalized coordinates, where in general 𝑛 ≠ 𝑁.  The 
generalized coordinates are written as 𝑞⃗ = (𝑞1, 𝑞2, … 𝑞𝑛).  We assume that only conservative 
forces act between the particles, hence (as known from previous studies) the potential energy 
is a function only of the coordinates: 𝑈 = 𝑈(𝑞⃗).  The kinetic energy is that of all of the 
particles in the system: 𝑇 = 1

2
∑ 𝑚𝛼𝑟̇𝛼2𝑁
𝛼=1 .  The “raw” coordinates 𝑟𝛼can be written in terms 

of the generalized coordinates as 𝑟𝛼 = 𝑟𝛼(𝑞1,𝑞2, … 𝑞𝑛), where it is assumed that no explicit 
time-dependence is required to write down this transformation.  The kinetic energy can be 

written as 𝑇 = 1
2
∑ ∑ 𝐴𝑖𝑗𝑛

𝑗=1 𝑞̇𝑖𝑞̇𝑗𝑛
𝑖=1 , where the matrix 𝐴̿ is defined as 𝐴𝑖𝑗 ≡ ∑ 𝑚𝛼

𝜕𝑟𝛼
𝜕𝑞𝑖

𝜕𝑟𝛼
𝜕𝑞𝑗

𝑁
𝛼=1 .  

Note that the double pendulum kinetic energy (see the Lagrangian above) has a kinetic 
energy of this form, including a 𝑞̇1𝑞̇2 term.  Note that the matrix 𝐴̿ is a function of the 
generalized coordinates as well: 𝐴̿ = 𝐴̿(𝑞⃗).  We now have the full Lagrangian of this 
generalized coupled oscillator problem ℒ = 𝑇�𝑞⃗, 𝑞̇⃗� − 𝑈(𝑞⃗).   

We next considered the small oscillation motion of the system around a stable 
equilibrium point.  This means that we will keep terms only up to second order in the 
variables.  By a shift of the origin, we can make the stable equilibrium point appear at the 
point 𝑞⃗ = (0, 0, … 0).  We then did a Taylor series expansion of the potential around this 
point and kept terms up to second order, yielding 𝑈(𝑞⃗) = 1

2
∑ 𝐾𝑖𝑗𝑞𝑖𝑞𝑗𝑖,𝑗 , where the matrix 

elements of 𝐾� are the curvatures of the potential with respect to the generalized coordinates: 

𝐾𝑖𝑗 ≡
𝜕2𝑈

𝜕𝑞𝑖𝜕𝑞𝑗
�
𝑞�⃗ =0

.  The kinetic energy is already quadratic in the variables, so we simply 

evaluate it at 𝑞⃗ = 0 to yield  𝑇 = 1
2
∑ 𝐴𝑖𝑗(0)𝑞̇𝑖𝑞̇𝑗𝑖,𝑗 = 1

2
∑ 𝑀𝑖𝑗𝑞̇𝑖𝑞̇𝑗𝑖,𝑗 , where the mass matrix 

𝑀�  is the 𝐴̿ matrix evaluated at the equilibrium position 𝑞⃗ = (0, 0, … 0).  The Lagrangian 
ℒ = 𝑇�𝑞̇⃗� − 𝑈(𝑞⃗) is now a homogeneous quadratic function of the coordinates and their 
time-derivatives, and the matrices 𝑀�  and 𝐾� are constant symmetric real matrices.   

There are 𝑛 Lagrange equations to set up and solve.  We wrote down the equations and 
found that the set of 𝑛 equations are summarized beautifully in a simple matrix equation: 
−𝐾�𝑞⃗ = 𝑀�𝑞̈⃗.  We can solve this equation using the same method employed before, just 
generalized to  𝑛 coordinates.  We use the complex ansatz for the solution vector: 𝑞⃗(𝑡) =
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𝑅𝑒�𝐶𝑒𝑖𝜔𝑡�, where 𝐶 = �

𝐶1
𝐶2
⋮
𝐶𝑛

�, and the 𝐶𝑖 are complex constants.  Putting this into the matrix 

equation yields �𝐾� − 𝜔2𝑀��𝐶 = 0.  To get a non-trivial solution for 𝐶, we demand that 
𝑑𝑒𝑡�𝐾� − 𝜔2𝑀�� = 0.  This yields an 𝑛-th order equation for 𝜔2, with 𝑛 real solutions (we 
know this because the matrix 𝐾� − 𝜔2𝑀� is real and symmetric).  The 𝑛 normal modes follow 
by standard linear algebra. 

 


