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We considered the most general coupled oscillator problem — N particles coupled to each
other by means of springs or any other types of forces that produce a stable equilibrium
configuration. This system has n generalized coordinates, where in general n # N. The
generalized coordinates are written as ¢ = (g4, g5, .- ). We assume that only conservative
forces act between the particles, hence (as known from previous studies) the potential energy
is a function only of the coordinates: U = U(G). The kinetic energy is that of all of the
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particles in the system: T = 523’:1"1(1%?- The “raw” coordinates 7, can be written in terms

of the generalized coordinates as 7, = 7,,(q1, g2, -.- ¢»), Where it is assumed that no explicit
time-dependence is required to write down this transformation. The kinetic energy can be

% dq; 0q;
Note that the double pendulum kinetic energy (see the Lagrangian above) has a kinetic
energy of this form, including a ¢, g, term. Note that the matrix 4 is a function of the

generalized coordinates as well: 4 = A(g). We now have the full Lagrangian of this

writtenas T = %Z?le’]?:lAij 4:q;, where the matrix A is defined as Ay =Yim

generalized coupled oscillator problem £ = T(§,q) — U(d).

We next considered the small oscillation motion of the system around a stable
equilibrium point. This means that we will keep terms only up to second order in the
variables. By a shift of the origin, we can make the stable equilibrium point appear at the
point ¢ = (0,0, ...0). We then did a Taylor series expansion of the potential around this

point and kept terms up to second order, yielding U(q) = %Zid- K;jq;q;, where the matrix
elements of K are the curvatures of the potential with respect to the generalized coordinates:
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. The kinetic energy is already quadratic in the variables, so we simply
g=0

evaluate itat g = 0 to yield T = %Zi,inj(O)qiqj = %Zi,j M;;q;q;, where the mass matrix
M is the A matrix evaluated at the equilibrium position d = (0,0,...0). The Lagrangian
L= T(ci) — U(qg) is now a homogeneous quadratic function of the coordinates and their
time-derivatives, and the matrices M and K are constant symmetric real matrices.

There are n Lagrange equations to set up and solve. We wrote down the equations and
found that the set of n equations are summarized beautifully in a simple matrix equation:

—Kg = 176 We can solve this equation using the same method employed before, just
generalized to n coordinates. We use the complex ansatz for the solution vector: ¢(t) =
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Re[(?ei“’t], where € = C:Z , and the C; are complex constants. Putting this into the matrix
G
equation yields (K — w21\7)5 = 0. To get a non-trivial solution for C, we demand that
det(l? — w21\71) = 0. This yields an n-th order equation for w?, with n real solutions (we

know this because the matrix K — w2M is real and symmetric). The n normal modes follow
by standard linear algebra.



